Quality Assurance and Testing of Facades

Sudhanshu Dighe FITI

future skyline

THE CHALLENGES

DESIGN

PERFORMANCE

COST

TIME LINES

QUALITY

FAÇADE DESIGN REQUIREMENTS

HIGH WIND PRESSURE

PEDESTRAIN COMFORT

FIRE / VENTILATION

WORKMANSHIP DEPENDENCY

SAFETY

Why Façade Testing?

Last chance for correction of design to meet performance.

Key to stability certification to the building.

Must for every building validation and certification.

Must for safety as a whole.

MAIN PERFORMANCE PARAMETERS

Weather

Structural

Seismic

Thermal

Acoustics

Fire

Weather - AIR LEAKAGE

Air Infiltration

-Under positive pressure

-Air infiltration means heat entering inside. Air Exfiltration

-Under negative pressure

-Air exfiltration means loss of cool air.

Either way is loss of air-conditioning Also loss in Acoustical performance. Cannot be verified in drawings alone.

Air Performance Standards

• 5.76 m ³ /hr/m ² • 1.8 m ³ /h	nr/m²	 2.06 m³/hr/m² 	 0.50 m³/hr/m²

Air Test Pressure

FACADE INDIA

Weather - WATER LEAKAGE

Water Leakage

- -Under positive pressure
- -Damages interior, False celling and furnishings.
- -Ineffective utilization of floor space near façade perimeter.
- -Fungal growth
- Cannot be verified in drawing alone. Scientific system design to be Followed.

Water Test Pressure

Testing Inc

SIESMIC & LIVELOAD MOVEMENTS

UNITISED WITH SLIDER STACK JOINT

Intermediate Floor Drift

- 0.4 % of Floor Height L/250
- Flexible Joints at Floor Level to Release Forces.
- Cast In Chanel With T-Bolt Allowing Movement.

PERFORMANCE TEST SEQUENCE

- 50% Structural load -
- Vent Open Close 5 times
- Air Infiltration test 300Pa (As per ASTM E 283)
- Static Water Test 450Pa (As per ASTM E 331) –
- Dynamic Water Test 450Pa (As per AAMA 501.1) –
- Structural Wind load Test 1000Pa (As per ASTM E 330)
- Repeat Static Water Test 300Pa (As per ASTM E 331) –
- Proof Load Test 1500Pa (As per ASTM E 330)

Case Study – Kohinoor Square

Diamond Skin Design

ARCHITECTURAL REQUIREMENT

Articulated Façade Vision glass inclined outward & inward.

Spandrel glass inclined inward & outward.

Profile fin projection visible in elevation.

WIND ANALYSIS

Wind Pressure Zoning

2 – 2.75 Kpa 3 – 3.25 Kpa 3.5 – 4 Kpa 4.25 – 5.25 Kpa – 10 %

System Design

4 Kpa

Remaining 10% after checking the reserve strength.

Articulated Unitized system -1.5 m x 3.9 m units 250mm Deep profile.

Glass articulation in Mullion Fin projection.

Telescopic base profile to receive articulation.

ENGINEERING OF GLASS

High reflective glass.

Vision glass - 32mm IGU glass of 1.5 m x 3.0 m (8 +16AG+8)

Glass fabrication Quality - Flatness of glass within 2 mm.

Annual weather cycle 20% of DWP (800 Pa)

Pressure drop at height

DESIGN VALIDATING

Design validation by performance test process carried out at Laboratory.

Air leakage test at 300 Pa.

Water leakage test at 750 Pa- 1200 Pa – 1500 Pa.

Wind load serviceability test at Step 1 – Passed 4 kpa. Step 2 – Passed 6 kpa. Step 3 – Reserved strength of 7.3 kpa.

Seismic inter story floor drift at 15mm.

Case Study – Brigade Gateway, World Trade Centre

Skewed Glazing System

ARCHITECTURAL REQUIREMENT

Vision glass skewed in Plan.

Spandrel glass straight in plan.

Visible mullion 200mm deep as Fin projection (South elevation)

Façade curved in plan.

Vision glass – Floor to Celling – 1.5m x 3.6 m Wind pressure – 1.6 kpa ENGINEERING OF GLASS

Glass fabrication Quality - Flatness of glass within 2 mm.

Annual weather cycle 20% of DWP

Pressure drop at height.

Unitized Element Design - 1.5m x 4.2m units

SYSTEM DESIGN

System – Structurally Glazed with mechanical holding

250mm Split mullion with 3 barrier gasket system.

200mm deep mullion projection acting as vertical Fin.

DESIGN VALIDATING

Design validation by performance test process carried out at Laboratory.

Air leakage test at 300 Pa.

Water leakage test at 600 pa

Wind load serviceability test at Step 1 – Passed 1.8 kpa Step 2 – Passed 2.7 kpa

Seismic inter story floor drift at 24mm.

THANK YOU

